If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+33=0
a = 1; b = -20; c = +33;
Δ = b2-4ac
Δ = -202-4·1·33
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{67}}{2*1}=\frac{20-2\sqrt{67}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{67}}{2*1}=\frac{20+2\sqrt{67}}{2} $
| x^2−20x+33=0 | | -8x-3(2x+2)=67 | | 19+6=3x | | x^2+2x−31=0 | | 4x-4.7=6.5 | | x^2+2x-31=0 | | -5x+7=-4x+39 | | (5x-10)=115 | | x^2−16x+37=0 | | -1/2(x+12)+3x=-1 | | -2(-10n)=10(2n-6) | | 48=x*x+8x | | t^2=-176 | | -4/3(5/3+x)=-16/9 | | 15-2n=-5 | | g/9+39=44 | | g/9+ 39=44 | | t^2+176=0 | | g9+ 39=44 | | -3(4w+8)=11-7w | | 7+2/m=15 | | 76=-4(3k-4) | | 3/4+1/3x=6 | | 13x^2-5x-9=0 | | s−642=10 | | s−64/2=10 | | 180=9x-27 | | 5=h+14/9 | | -8z+24-12=4 | | y/4-y/5=40 | | 2m−25=3 | | 2/3+31/4=3t/6 |